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Abstract. This is a general talk in front of specialists on computational dif-

ferential algebra. Monomials play a significant role in most computational
methods culminating in Gröbner bases. But the topic of this talk aims to

encode the data of a monomial ideal on an object in algebraic topology which

has some finite and geometric nature. Although these objects could be more
general, we will restrict to the so called “polytopal complexes” only.

1. Cell complexes and their chain complexes, cellular resolution of
monomial ideals

We First recall the concept of a polyhedral cell complex.

Definitions. A polytope P is the convex hull of a finite set of points in some Rm.
A polyhedral cell complex X is a finite collection of polytopes (in Rm) called faces
of X, satisfying the following two properties:

• If P is a polytope in X and F is a face of P, then F is in X.

• If P and Q are in X, the P ∩Q is a face of both P and Q.

For example, the set of all faces of a polytope is a polyhedral cell complex. Any
simplicial complex may be considered as a polyhedral cell complex via its geometric
realization.

Since we will only deal with polyhedral cell complexes, we will simply call them
cell complexes.

The dimension of a polytope (or a face) is its Euclidian dimension. The dimen-
sion of a cell complex is the maximum of the dimensions of its polytopes. The zero
dimensional faces of Γ are called the vertices of Γ.

The set of q-dimensional faces of a cell complex X will be denoted by Xq.
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2 ON CELLULAR RESOLUTION OF MONOMIAL IDEALS

For any cell complex X with vertex set V = {v0, v1, · · · , vn}, there is a chain
complex similar to the reduced chain complex for a simplicial complex. Let Cq(X)
be the free Z-module with basis consisting of the faces in Xq. The chain complex
of X is the complex

C• : 0 −→ Cn(X)
∂n−→ Cn−1(X)

∂n−1−→ · · · ∂2−→ C1(X)
∂1−→ C0(X) (1)

where for F ∈ Xq,

∂q(F ) =
∑
G

ε(F,G).G (2)

Here ε(F,G) is the orientation or incidence function

ε : X ×X −→ {−1, 0, 1}
which satisfies

• ε(F,G) = 0 unless F ∈ Xq and G ∈ Xq−1 is a face of F for some q.

• For all F and H,
∑
G ε(F,G)ε(G,H) = 0.

The orientation function ε(F,G) indicates whether G appears with positive or neg-
ative orientation in the boundary of F .

Let R = k[x1, · · · , xn] be the polynomial ring in n variables over a field k. Let
I ⊂ R be a homogeneous ideal and let

L• : 0 −→ Rβn
dn−→ Rβn−1

dn−2−→ · · · d2−→ Rβ1
d1−→ Rβ0

d0−→ I −→ 0 (3)

be a minimal free resolution of I. Set Lq = Rβq .

Roughly speaking, a resolution L• is said to be supported on a cell complex X if
the faces of X can be labeled with monomials in a way which allows one to recover
the resolution L• from the chain complex associated to X. Below we will see a
more precise definition.

The idea to describe a resolution of a monomial ideal by means of combinatorial
chain complexes was initiated by Bayer, Peeva and Sturmfels [1], and was extended
by Bayer and Sturmfels [2], and further extension was made by Jöllembeck and
Welker [6]. Sinefakoupols [8] showed that the Borel-fixed monomial ideals which
are Borel-fixed generated in one degree are cellular supported on a union of convex
polytopes [8, Theorem 20]. Mermin constructed a regular cell complex which sup-
ports the Eliahou-Kervaire resolution of a stable monomial ideal [7]. This resolution
is not in general polytopal [7, Theorem 4.20]. Dochtermann and Engström gave
a cellular resolutions for the ideals of cointerval hypergraphs supported by poly-
hedral complexes and extended their construction to more general hypergraphs by
decomposing them into cointerval hypergraphs [3, Theorems 4.4 and 6.1]. Recently,
Dochtermann and Engström constructed cellular resolutions for powers of ideals of
a bipartite graph on n vertices and using Morse theory, they provided explicit min-
imal cellular resolution for powers of the edge ideals of paths [4, Proposition 4.4
and Theorem 7.2]. Recently, Goodarzi [5] gave a more general result proving the
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minimal free resolution of a monomial ideal with linear quotients, the so-called
Herzog-Takayama resolution is also cellular, covering most of previous results.

We consider the square-free Veronese ideal of degree t in n variables and illus-
trate the method of showing that such a monomial ideal has a polytopal minimal
free resolution.

Determination of a canonical minimal free resolution for an arbitrary monomial
ideal I is a major open problem in combinatorial commutative algebra which was
indeed posed by Kaplansky in the early 1960’s. If a monomial ideal has a cellu-
lar resolution its minimal free resolution is characteristic-free. If the cell complex
providing the resolution is a simplicial complex, then, the minimal free resolution
has the structure of an associative commutative graded algebra. Furthermore, the
finely-graded Hilbert series of of the quotient ring by the ideal equals the finely-
graded Euler characteristic of the cell-complex.

Let I ⊂ R = k[y1, · · · , yn] be a monomial ideal in the polynomial ring over a
field k and let G(I) be the unique minimal monomial generating set of I. Let X be
a polytopal cell complex with G(I) as its vertices. Let εX be an incidence function
on X. Any face of X will be labeled by mF , the least common multiple of the
monomials in G(I) which correspond to the vertices of F . If mF = ya11 · · · yann ,
then the degree aF is defined to be the exponent vector e(mF ) = (a1, · · · , an). Let
RF be the free R-module with one generator in degree aF . The cellular complex
FX is the chain complex of Zn-graded R-modules (FX)i =

⊕
F∈X,dimF=iRF with

differentials
∂(F ) =

∑
∅6=F ′∈X

ε(F, F ′)
mF

mF ′
F ′.

If the complex FX is exact, then FX is called a cellular resolution of I. Alterna-
tively, we say that I has a cellular resolution supported on the labeled cell complex
X. If X is a polytope or a simplicial complex, then FX is called polytopal, and
simplicial, respectively. A cellular resolution FX is minimal if and only if any two
comparable faces F ′ ⊂ F of the same degree coincide. For more on cellular resolu-
tions and polytopal complexes we refer to [10], [11] and [13].

As an example, the minimal free resolution of an ideal generated by a regular
sequence of monomials m1, . . . ,mr of length r, r ≤ n, in R = k[x1, · · · , xn] is
the Koszul complex associated to the regular sequence and it is supported on the
(r − 1)-simplex ∆(m1, . . . ,mr) in Rr−1.

The following two lemmas will be essential for our constructions.

Lemma 1.1. (The gluing lemma) [8, Lemma 6]. Let I and J be two ideals in R
such that G(I + J) = G(I) ∪G(J). Suppose that
(i) X and Y are labeled regular cell complexes in some RN that supports a minimal
free resolution FX and FY of I and J , respectively, and
(ii) X ∩ Y is a labeled regular cell complex that supports a minimal free resolution
FX∩Y of I ∩ J .
Then X ∪Y is a labeled regular cell complex that supports a minimal free resolution
of I + J .
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Remark 1.2. [8, Remark 7]. For any two monomial ideals I and J , we have

G(I + J) ⊆ G(I) ∪G(J).

A case where equality holds is when all elements of G(I) ∪ G(J) are of the same
degree.

Lemma 1.3. [8, Lemma 8]. Let I ⊂ k[y1, · · · , yk] and J ⊂ k[yk+1, · · · , yn] be
two monomial ideals. Suppose that X and Y are labeled regular cell complexes in
some RN of dimensions k − 1 and n − k − 1, respectively, that support minimal
free resolutions FX and FY of I and J , respectively. Then the labeled cell complex
X × Y supports a minimal free resolution FX×Y of IJ .

2. A cellular resolution for square-free Veronese ideals

We now consider construction of a cellular resolution for square-free Veronese
ideals. Let S = k[x1, · · · , xn]. To facilitate the notations in the proofs, the square-
free Veronese ideal in degree t in S, i.e., the the ideal generated by all square-free
monomials of degree t in n indeterminates x1, · · · , xn, will be denoted by In,t. To
illustrate the method for the construction of the cellular resolution for In,t, we will
first consider two examples. We use Γn,t to denote a polytopal cell complex which
is supposed to support a minimal free resolution of In,t.

Example 2.1. A cellular resolution of I5,2.
Consider the following decomposition of I5,2:

I5,2 = (x1).(x2, x3, x4, x5) + (x1, x2).(x3, x4, x5) + (x1, x2, x3).(x4, x5)+

(x1, x2, x3, x4).(x5).

We show that

Γ5,2 = [∆(x1)×∆(x2, x3, x4, x5)] ∪ [∆(x1, x2)×∆(x3, x4, x5)]∪

[∆(x1, x2, x3)×∆(x4, x5)] ∪ [∆(x1, x2, x3, x4)×∆(x5)],

and this is a subdivision of the tetrahedron ∆(x1x2, x2x3, x3x4, x4x5). We will use
the gluing lemma. Observe that

[∆(x1)×∆(x2, x3, x4, x5)] ∩ [∆(x1, x2)×∆(x3, x4, x5)] = ∆(x1)×∆(x3, x4, x5),

which supports a minimal free resolution of

[(x1).(x2, x3, x4, x5)] ∩ [(x1, x2).(x3, x4, x5)] = (x1).(x3, x4, x5).

Hence

[∆(x1)×∆(x2, x3, x4, x5)] ∪ [∆(x1, x2)×∆(x3, x4, x5)]

supports a minimal free resolution of (x1).(x2, x3, x4, x5)+(x1, x2).(x3, x4, x5). Fur-
thermore,

[∆(x1)×∆(x2, x3, x4, x5) ∪∆(x1, x2)×∆(x3, x4, x5)] ∩ [∆(x1, x2, x3)×∆(x4, x5)]

= ∆(x1, x2)×∆(x4, x5)

and it supports a minimal free resolution of

[(x1).(x2, x3, x4, x5)+(x1, x2).(x3, x4, x5)]∩[(x1, x2, x3).(x4, x5)] = (x1, x2).(x4, x5).

Therefore,

[∆(x1)×∆(x2, x3, x4, x5)]∪ [∆(x1, x2)×∆(x3, x4, x5)]∪ [∆(x1, x2, x3)×∆(x4, x5)]
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supports a minimal free resolution of

(x1).(x2, x3, x4, x5) + (x1, x2).(x3, x4, x5) + (x1, x2, x3).(x4, x5).

Finally,

[∆(x1)×∆(x2, x3, x4, x5) ∪∆(x1, x2)×∆(x3, x4, x5) ∪∆(x1, x2, x3)×∆(x4, x5)]∩
[∆(x1, x2, x3, x4)×∆(x5)] = ∆(x1, x2, x3)×∆(x5),

and it supports a minimal free resolution of

[(x1).(x2, x3, x4, x5)+(x1, x2).(x3, x4, x5)+(x1, x2, x3).(x4, x5)]∩[(x1, x2, x3, x4).(x5)]

= (x1, x2, x3).(x5).

Therefore, Γ5,2 supports a minimal free resolution of I5,2 and it is a regular subdi-
vision of ∆(x1x2, x2x3, x3x4, x4x5) (see Fig. 1).

Example 2.2. A cellular resolution of I6,3.
The appropriate decomposition for the ideal I6,3 is:

I6,3 = I2,2.(x3, x4, x5, x6) + I3,2.(x4, x5, x6) + I4,2.(x5, x6) + I5,2.(x6).

We claim that

Γ6,3 = [Γ2,2×∆(x3, x4, x5, x6)]∪[Γ3,2×∆(x4, x5, x6)]∪[Γ4,2×∆(x5, x6)]∪[Γ5,2×∆(x6)],

and Γ6,3 is a subdivision of the tetrahedron

∆(x1x2x3, x2x3x4, x3x4x5, x4x5x6).

Note that each product in the above union is the polytopal cell complex that sup-
ports a minimal free resolution of the corresponding summand in the expression of
I6,3. The products in the union, consecutively, satisfy the hypotheses of the gluing
lemma. Indeed, the first two product polytopes in the union are in common on
Γ2,2 ×∆(x4, x5, x6) which supports a minimal free resolution of I2,2.(x4, x5, x6) =
[I2,2.(x3, x4, x5, x6)] ∩ [I3,2.(x4, x5, x6)]. Hence their union supports a minimal free
resolution of the sum of the first two summands in the expression of I6,3. This
union intersects the third polytope in the expression of Γ6,3 along Γ3,2 ×∆(x5, x6)
which supports a minimal free resolution of I3,2.(x5, x6) = [I2,2.(x3, x4, x5, x6) +
I3,2.(x4, x5, x6)] ∩ [I4,2.(x5, x6)]. Hence the union of the first three polytopes is a
polytopal cell complex which supports a minimal free resolution of the sum of the
first three ideals in the expression of I6,3. Finally, by Example 2.1, Γ5,2×∆(x6) sup-
ports a minimal free resolution of I5,2.(x6) and the union of the first three polytopes
intersects the last polytope in the expression of Γ6,3 along Γ4,2 ×∆(x6) which sup-
ports a minimal free resolution of I4,2.(x6) = [I2,2.(x3, x4, x5, x6)+I3,2.(x4, x5, x6)+
I4,2.(x5, x6)]∩ [I5,2.(x6)]. Therefore, the union of the four polytopes supports a min-
imal free resolution of I6,3. This cell complex is clearly a regular subdivision of the
tetrahedron ∆(x1x2x3, x2x3x4, x3x4x5, x4x5x6) (see Fig. 3).

The following lemma is a key item for the construction of the polytopal cell
complex to support a minimal free resolution of In.t.

Lemma 2.3. For all t, 2 ≤ t ≤ n− 1 we have the following decomposition

In,t = It−1,t−1.(xt, · · · , xn) + It,t−1.(xt+1, · · · , xn) + · · ·+ In−1,t−1.(xn),

and for all k, t ≤ k ≤ n− 1,

[It−1,t−1.(xt, · · · , xn) + It,t−1.(xt+1, · · · , xn) + · · ·+ Ik−1,t−1.(xk, · · · , xn)]∩
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[Ik,t−1.(xk+1, · · · , xn)] = Ik−1,t−1.(xk+1, · · · , xn).

Now we can state the main theorem.

Theorem 2.4. There exists a polytopal cell complex Γn,t ⊂ Rn−t that supports a
minimal free resolution of In,t. Moreover, Γk,t ⊂ Γk+1,t, for all t ≤ k ≤ n− 1, and

Γn,t = [Γt−1,t−1×∆(xt, · · · , xn)]∪[Γt,t−1×∆(xt+1, · · · , xn)[∪ · · ·∪[Γn−1,t−1×∆(xn)].

Proposition 2.5. The polytopal cell complex Γn,t is a regular polytopal subdivision
of the (n− t)-simplex

∆(x1 · · ·xt, x2 · · ·xt+1, · · · , xn−t+1 · · ·xn).

In particular Γn,t is shellable.

Remark 2.6. Reiner and Welker [12] have expressed linear syzigies of any Stanley-
Reisner ideal I∆ in terms of homologies of the Alexander dual complex ∆∗. When
I∆ is a matroidal ideal, they were able to go further and provide a rather explicit
free resolution for this ideal [12, §6]. It would be tempting to ask whether their
resolution is cellular.
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